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Abstract  

Superconducting (Li1-xFex)OHFe1-ySe films are attractive for both the basic research 

and practical application. However, the conventional vapor deposition techniques are 

not applicable in synthesizing the films of such a complex system. So no intrinsic 

charge transport measurements on the films are available so far to reveal the nature of 

charge carriers, which is fundamental to understanding the iron-based 

superconductivity mechanism. Herein we report a soft chemical film technique 

(matrix-assisted hydrothermal epitaxial growth), by which we have succeeded in 

growing a series of (Li1-xFex)OHFe1-ySe films covering the whole superconducting 

regime, with the superconducting transition temperature (Tc) from 4 K up to 42 K. 

This film technique opens up a new way for fabricating other complex functional 

materials as well. Furthermore, our systematic transport investigation on the film 

samples indicates that both the electron and hole carriers contribute to the charge 

transport, with the scattering rates deviating from the Fermi liquid. We find that the 

superconductivity occurs upon the electron and hole mobility becoming divergent. 

And in the high Tc samples, the electron carriers are found much more mobile than the 

holes, a feature distinct from the low Tc samples. Hence, our transport results provide 

key insights into the underlying physics for iron-based high-Tc superconductivity.  
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Iron-based superconductor films are emerging as a hot topic with regard to the 

experimental studies on the superconductivity mechanism and possible 

applications.
1-12

 In particular, it is intriguing that a possible Tc as high as above 65 K 

has been reported for a monolayer film of binary iron selenide FeSe,
13-18

 in contrast to 

a rather low Tc (~10 K) commonly in multilayer films of FeSe. 
5,9,11,19

 However, 

probing into some intrinsic electronic behaviors as charge transport in the monolayer 

FeSe film is hampered by its high air sensitivity and interface effect. These drawbacks 

cast a shadow over a comprehensive understanding of this particular kind of material 

and its application as well. Nevertheless, the recently discovered intercalated iron 

selenide, (Li1-xFex)OHFe1-ySe (FeSe-11111),
20

 has turned out to be the best substitute. 

It shows a Fermi topology similar to the monolayer FeSe 
21,22

 and a high Tc over 40 K, 

even above 50 K under a 12.5 GPa pressure.
23

 Compared to the prototypal and other 

intercalated iron selenides, FeSe-11111 manifests itself as a clean system ideal for 

investigating the intrinsic electronic properties. It is free from the complications of 

phase separation, structure transition and interface effects. Moreover, it has better 

chemical stabilities in air compared to the monolayer FeSe and in high pressures,
23

 

providing the ease of the property measurements. However, the film materials of 

(Li1-xFex)OHFe1-ySe cannot be synthesized by conventional high-temperature growth, 

due to the hydroxyl ion inherent in the compound. This film synthesis problem is now 

resolved by the soft chemical technique of matrix-assisted hydrothermal epitaxial 

growth (MAHEG) that we develop and report here.  

 

First of all, the MAHEG technique is capable of producing high-quality 

single-crystalline (Li1-xFex)OHFe1-ySe films and manipulating the Tc in a wide range 

from ~4 K up to ~42 K. This film technique opens up a new way for fabricating other 

complex functional materials as well. Secondly, the high-quality film samples can be 

well cleaved and patterned into standard Hall bars of a small thickness (~100 nm) that 

cannot be achieved on single crystal samples (tens of microns). So, a much higher 

signal-to-noise ratio, improved by two to three orders of magnitude, can be attained. 

These favorable sample conditions are vital for extracting the transport information 

essential for understanding the mechanism of iron-based unconventional 

superconductivity. Actually, we find that both the electron and hole carriers contribute 

to the electrical transport and their mobilities become diverging as approaching the 

superconducting transition temperature. Particularly in the high Tc samples, the 

electron carriers are found much more mobile than the holes. Thirdly, the high-Tc 

FeSe-11111 film by MAHEG has shown a large critical current density
12

 over 0.5 

MA/cm
2
 and high upper critical fields,

12,24,25
 thus promising for practical applications 

in high fields and high-performance electronic devices. 

 

Figure 1a is a schematic picture of the MAHEG process for growing 

(Li1-xFex)OHFe1-ySe films. Similar to our previous method of the hydrothermal 

ion-exchange for the optimal superconducting (Li0.84Fe0.16)OHFe0.98Se single 

crystal,
24

 insulating  K0.8Fe1.6Se2 single crystals were used as a matrix. The 



K0.8Fe1.6Se2 precursor, containing FeSe4-tetrahedra layers similar to the target 

compound, facilitates the hydrothermal epitaxial growth on a substrate of LaAlO3 

(LAO) single crystal. The composition, x and y, for the superconducting films of 

different Tc’s are estimated to be around 0.2 and less than 0.05, respectively, but 

cannot be definitely determined by routine probes due to the limited sample mass of 

each batch of MAHEG (see Supporting Information). Nevertheless, the lattice 

constant c can be accurately determined as a control parameter for the Tc of 

FeSe-11111.
26

 More experimental details can be found in Supporting Information, 

including by other matrix and substrate crystals. 

 

Five typical FeSe-11111 film samples denoted as SC42, SC35, SC30, SC20 and SC04, 

respectively, were characterized by X-ray diffraction (XRD). The formation of 

(Li1-xFex)OHFe1-ySe phase, characteristic of a primitive lattice, and a single preferred 

(001) orientation are confirmed by the measurements of 𝜃-2𝜃 scan (Supporting 

Information Figure S1). The XRD patterns characteristic of (00𝑙) reflections in 

absence of integral systematic extinctions are in agreement with that of the 

FeSe-11111 single crystal.
24

 But a position shift of the (00𝑙) peaks is clearly visible 

from the zoom-in (005) patterns (Figure 1b), indicative of a gradual c-axis lattice 

expansion from sample SC04 to SC42. The in-plane crystal mosaic of the films is 

small, in the range of 0.08 to 0.22 (except sample SC04 of the lowest Tc) in terms of 

the full width at half maximum (FWHM) of the rocking curves (Figure 1c). To our 

knowledge, these FWHM values are so far the best among various iron-based 

superconducting films and single crystals. The -scan of (101) plane for each sample 

consists of four successive peaks spaced out by 90 (Figure 1d). It agrees with the C4 

symmetry of FeSe-11111, thus demonstrating an excellent out-of-plane orientation 

and epitaxy. The inset of Figure 1c shows a shiny, mirror-like surface morphology of a 

cleaved film. These results clearly indicate that the films are of high crystalline 

quality. 

 

The superconductivity of the films was characterized by in-plane electrical resistivity 

xx (Figure 2a) and verified by magnetic susceptibility  (Figure 2b) measurements. 

The superconducting transition temperature Tc at zero resistivity is determined as 42.2 

K for SC42, 35 K for SC35, 30 K for SC30, 20 K for SC20 and 4 K for SC04. As seen 

from Figure 2c, the Tc increases with the lattice expansion along c-axis, or in other 

word, with the expansion in the interlayer spacing. Such a positive correlation 

between the Tc and the interlayer separation was first reported for the powder samples 

of FeSe-11111.
26

 It seems common to a variety of iron selenide superconductors
24

 

even the pressurized (<5 GPa) FeSe-11111 as well.
23

 

 

Benefiting from the high-quality FeSe-11111 film samples, we are able to attain the 

electrical transport quantities essential for disentangling the characters of the 

normal-state charge carriers. The Hall resistivity of each sample is proportional to the 

magnetic field B, i.e. xy(B)  B (Figures 3a and S2). Thus, the slope explicitly 

determines the Hall coefficient RH = xy(B)/B. Figure 3b shows the temperature 



dependences of RH for the five samples, with the RH values all negative at measuring 

temperatures. The proportional relationship of xy(B)  B commonly occurs in 

electronic systems of either one type or nearly compensated two types of charge 

carriers. It is obvious that the one-carrier picture cannot account for the 

non-monotonic behavior of RH vs. T (Figure 3b). In the two-carrier model, the Hall 

resistivity has a simple expression: xy(B) = (h-e)B/[(h+e)(ne)] (Supporting 

Information SI 1). Here, n is the carrier number, e the electron charge, e and h the 

mobility of electron (e) and hole (h) carriers, respectively. Note that xx(B) = 

(1+heB
2
)/[(h+e) (ne)] (SI 1), thereby the Hall angle can be expressed as tan = 

xy(B)/xx(B) = [(h-e)/(1+heB
2
)]B. So, a relationship of tan  1/B is expected 

when heB
2 

>> 1, whereas heB
2 

<< 1 will yield tan  B. For all the film samples, 

the Hall angle tan is proportional to B at all measuring temperatures (Figures 4a and 

S3), which means heB
2 

<< 1. In fact, we have performed our measurements in fields 

no more than 9 T, so that heB
2
<< 1 can be satisfied. The magnetoresistivity can be 

expressed as MR = [xx(B)/xx(B=0)]-1 = xx/xx(B=0) = heB
2
. Actually, a 

proportional MR  B
2
 holds for all our samples in the normal state up to 80 K 

(Figures 4b and S4). Consequently, the mobility values of the electron and hole 

carriers can be extracted from the slopes of tan(B)/B (h-e) and MR/B
2
 (=he). 

 

The temperature dependences of the mobility for the two types of carriers are plotted 

in Figure 5a. Surprisingly, we find that both the electron and hole mobility, e and h, 

tend to diverge as the temperature approaches the onset temperature of the 

superconductivity (Tc
onset

, the values in Figure 2a caption). Such a divergence, rare in 

unconventional superconductors, suggests the simultaneous occurrences of the 

superconducting electron pairing and phase coherence. Note that the charge mobility 

 = (e)/m*
, here  and m

*
 are the scattering relaxation time and effective mass of an 

electron (or a hole), respectively. Therefore, with a finite value of m
*
, such a mobility 

behavior reflects a diverging scattering relaxation time which signifies the proximity 

to the superconducting transition. To get further information on the charge scatterings, 

we choose a function form of fit = A(T- Tc
onset

)
-

 to fit the data of e(h) vs. T (Figure 

5a), with  and A as free parameters. The fittings yield a reasonable limited range for 

the exponent: ~0.6 <  < ~1 (Supporting Information Table S1). Here we cannot 

ascertain whether the electron and hole carriers share a common mobility exponent or 

not (Table S1). Nevertheless, we find that the electron mobility monotonically 

increases with Tc, by contrast the hole mobility tends to be saturated at higher Tc’s 

(Figure 5b). That is, the difference between the electron and hole mobility, μe - μh, is 

small for the lower Tc samples but becomes pronounced for the higher Tc samples. 

Furthermore, the fitted  values significantly deviate from the Fermi liquid ( = 2). 

 

In addition, the curves of Hall coefficient RH vs. temperature T display a broad dip 

feature, with a minimum RH at a characteristic temperature T
*
 (Figure 3b). We find 

that the Tc is promoted with increasing T
*
 (Figures 3b and 3c), which provides a 

further clue to the interplay of the charge carriers’ character and the superconductivity. 

From RH = (μh-μe)/[(μh+μe)ne], the negative values of the Hall coefficient indicate 



that the electron mobility is dominant (μe > μh). One may expect that the highly 

mobile electrons and less mobile holes would play their respective roles in forming 

the high-Tc superconductivity in the films. Likely, the less mobile hole carriers reflect 

the presence of antiferromagnetic spin fluctuations in FeSe-11111.
24,29,30

 Thus, the 

positive correlation between the Tc and the temperature scale T
*
 is an important issue 

worthy of further experimental studies. 

 

Finally, we make further discussions taking account of the recent high-resolution 

angle-resolved photoemission (ARPES) experiments on high-Tc FeSe-11111 single 

crystals
21,22

 and monolayer FeSe films.
14-16,18

 The carrier number (0.08 – 0.1 per Fe) 

estimated by ARPES for FeSe-11111 is consistent with our data (10
20

 – 10
21

 cm
-3

) 

estimated by the transport results. However, the ARPES measurements show that only 

the electron-like Fermi surfaces are present near the Brillouin zone corners (M points) 

but the hole-like bands near the Brillouin zone center ( point) are 70 - 80 meV below 

the Fermi level, for both FeSe-11111 and monolayer FeSe. To reconcile the present 

transport and the ARPES results, one may consider that the multibands crossing the 

Fermi level near the M points are strongly anisotropic, so that contribute both the 

electron-like and hole-like charge signals.
31

 However, there is another possibility that 

the hole carriers, much slower and heavier by the present study, are seemingly 

localized for the ARPES probe. Hence, our transport findings provide new insights 

into the normal-state electronic interactions in (Li1-xFex)OHFe1-ySe, from which the 

superconductivity stems at different Tc’s subsequent to the concurrent enhancements 

of the electron and hole mobility. Particularly, the normal-state charge transport in 

high-Tc (Li1-xFex)OHFe1-ySe is characteristic of a much higher mobility for the 

electron than the hole carriers. Our results thus put constraints on a universal 

microscopic theory for the high-Tc superconductivity. 
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Figure 1. The film growth and XRD characterizations.  a, Schematic of the 

matrix-assisted hydrothermal epitaxial growth (MAHEG) on LaAlO3 substrate. 

Facilitated by the insulating K0.8Fe1.6Se2 matrix crystal (left), the superconducting 

(Li1-xFex)OHFe1-ySe film (right) is derived under the hydrothermal reaction conditions 

described in Supporting Information.  b, Zoom-in XRD 𝜃-2𝜃 scans of the (005) 

peaks, showing a position shift due to a progressive lattice expansion along c-axis 

from sample SC04 to SC42.  c, Double-crystal x-ray rocking curves of (006) Bragg 

reflection and corresponding FWHM values, indicating the small in-plane crystal 

mosaicity. Inset: photomicrograph of a cleaved film on LAO substrate; the scale bar 

measures 200 µm.  d, XRD -scan of (101) plane for each sample consists of four 

peaks spaced out 90 apart, in agreement with the C4 symmetry. It demonstrates an 

excellent out-of-plane orientation and epitaxy.  

 

 

 



 

 

 

Figure 2. The superconductivity and its positive correlation with the c-axis lattice 

expansion.  a, Temperature dependences of xx(T)/xx(300 K). The Tc at zero 

resistivity is determined as 42.2 K for sample SC42, 35 K for SC35, 30 K for SC30, 

20 K for SC20, and 4 K for SC04. The Tc
onset

 (onset temperature of the 

superconductivity) determined from the resistivity is 43.3 K for sample SC42, 40.2 K 

for SC35, 34.6 K for SC30, 24.7 K for SC20, and 16.9 K for SC04.  b, Temperature 

dependences of diamagnetism, measured in zero-field-cooling mode. The signal for 

sample SC04 of the lowest Tc = 4 K is too weak to be detectable.  c, Tc as a function 

of the calculated lattice parameter c for the films (the blue squares). The data of the 

FeSe-11111 single crystal
24

 (the dark-yellow circular) are included, which conform 

well to the positive correlation between Tc and c. 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 3. The Hall resistivity (xy) and Hall coefficient (RH) measurements.  a, 

Proportional field dependences of the Hall resistivity xy(B). Here only the data at 60, 

130 and 200 K are shown for clarity; the complete data at all measuring temperatures 

are given in Figure S2.  b, Temperature dependences of the Hall coefficient RH(T), 

showing broad dip feature around characteristic temperatures (T
*
) marked by the 

black arrows. The pink shadows indicate the superconducting regions.  c, Plot of Tc 

versus T
*
 for the films (the dark-brown rhombuses), showing the Tc promotion with 

increasing T
*
. The corresponding data of the FeSe-11111 single crystal (the orange 

triangle)
24

 are included. 

 

 



 

 

Figure 4. The Hall angle (tan = xy/xx) and magnetoresistivity (MR) 

measurements.  a, Proportional field dependences of the Hall angle at 60, 130 and 

200 K. The complete data at all measuring temperatures are given in Figure S3. From 

the slope of xy/xx  B, the difference between the hole and electron mobility (h-e) 

can be obtained (see text).  b, Proportional relationship of MR  B
2
 at 50, 60 and 80 

K. For the data at all measuring temperatures (below 80 K) see Figure S4. From the 

slope of MR  B
2
, the quantity of he can be obtained (see text). 

 

 



 

 

 
Figure 5. The evolution of the electron and hole charge mobility.  a, Temperature 

dependences of the electron and hole mobility prior to the temperatures of Tc
onset

, 

indicated by the red vertical lines. The solid and dashed curves are the fitting results 

by fit = A(T- Tc
onset

)
-

 (see text). Both the electron and hole mobility tend to diverge 

as approaching Tc
onset

, suggesting the simultaneous occurrences of the 

superconducting electron pairing and phase coherence. For clarity the data of sample 

SC04 are not shown.  b, The electron and hole mobility exhibit distinct Tc 

dependences. That leads to pronounced mobility differences (μe - μh) between the 

electrons and holes for the higher Tc samples, in contrast to the lower Tc samples. 

Additional data on film samples besides the five typical ones are included for 

verification. The solid and dashed curves are guide to the eye. 

 


