IOPscience

Home Search Collections Journals About Contact us My IOPscience

The upper critical field and its anisotropy in $(Li_{1-x} Fe_x)OHFe_{1-y} Se$

This content has been downloaded from IOPscience. Please scroll down to see the full text. 2017 J. Phys.: Condens. Matter 29 025701 (http://iopscience.iop.org/0953-8984/29/2/025701)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 159.226.35.172 This content was downloaded on 21/11/2016 at 05:34

Please note that terms and conditions apply.

You may also be interested in:

Pressure dependence of upper critical fields in FeSe single crystals Ji-Hoon Kang, Soon-Gil Jung, Sangyun Lee et al.

Transport properties and anisotropy of superconducting (Li1xFex)OHFeSe single crystals Chunlei Wang, Xiaolei Yi, Yang Qiu et al.

From Kondo lattices to Kondo superlattices Masaaki Shimozawa, Swee K Goh, Takasada Shibauchi et al.

An overview of the Fe-chalcogenide superconductors M K Wu, P M Wu, Y C Wen et al.

Upper critical field, lower critical field and critical current density of FeTe0.60Se0.40 single crystals C S Yadav and P L Paulose

Tunnel diode oscillator measurements of the upper critical magnetic field of FeTe0.5Se0.5 A Audouard, L Drigo, F Duc et al.

Superconducting properties of iron chalcogenide thin films Paolo Mele J. Phys.: Condens. Matter 29 (2017) 025701 (6pp)

doi:10.1088/0953-8984/29/2/025701

The upper critical field and its anisotropy in $(Li_{1-x}Fe_x)OHFe_{1-y}Se$

Zhaosheng Wang¹, Jie Yuan², J Wosnitza¹, Huaxue Zhou², Yulong Huang², Kui Jin², Fang Zhou², Xiaoli Dong² and Zhongxian Zhao²

¹ Hochfeld-Magnetlabor Dresden (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, D-01314 Dresden, Germany

² Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China

E-mail: z.wang@hzdr.de

Received 21 July 2016, revised 24 October 2016 Accepted for publication 25 October 2016 Published 14 November 2016

Abstract

The temperature dependence of the upper critical field (H_{c2}) in a $(\text{Li}_{1-x}\text{Fe}_x)\text{OHFe}_{1-y}\text{Se}$ single crystal $(T_c \approx 40 \text{ K})$ has been determined by means of magnetotransport measurements down to 1.4 K both for inter-plane $(H||c, H_{c2}'')$ and in-plane $(H||ab, H_{c2}'')$ field directions in static magnetic fields up to 14 T and pulsed magnetic fields up to 70 T. H_{c2}'' exhibits a quasilinear increase with decreasing temperature below the superconducting transition and can be described well by an effective two-band model with unbalanced diffusivity, while H_{c2}'' shows a flattening below 35 K and follows the Werthamer–Helfand–Hohenberg (WHH) model incorporating orbital pair-breaking and spin-paramagnetic effects, yielding zero-temperature critical fields of $H_{c2}''(0) \approx 67 \text{ T}$ and $H_{c2}''(0) \approx 98 \text{ T}$. The anisotropy of the upper critical fields, $\gamma(T) = H_{c2}''/H_{c2}''$ monotonically decreases with decreasing temperature from about 7 near T_c to 1.5 at 0 K. This reduced anisotropy, observed in most Fe-based superconductors, is caused by the Pauli limitation of $H_{c2}'''^{lab}$.

Keywords: Fe-based superconductor, upper critical field, anisotropy

(Some figures may appear in colour only in the online journal)

1. Introduction

Since the discovery of superconductivity at 26 K in the FeAsbased superconductor LaFeAsO_{1-x} F_x [1], countless studies investigating the superconducting properties of Fe-based materials were stimulated in the community of condensed matter physicists and materials scientists. As a result, the superconducting transition temperature (T_c) was quickly increased to 55 K [2], making the Fe-based superconductors the second class of high-temperature superconductors. Later, superconductivity was also found in some FeSe-based materials.

 β -FeSe shows superconductivity at $T_c \approx 8.5$ K [3, 4]. By adding alkali-metal ions A (K, Cs, Rb, and Tl) between the FeSe layers, higher T_c s above 30 K were successfully achieved [5–9]. However, superconductors of the type A_y Fe_{2-x}Se₂ always are prone to inhomogeneities and phase separation. The coexistence with an insulating phase suggests that the interface may play an important role in superconductivity [10–12]. The exact nature of the superconducting phase in these materials still remains unclear. The phase separation and interface effects occurring in A_y Fe_{2-x}Se₂ hamper well-targeted experimental studies clarifying the origin of high-temperature superconductivity in the Fe-based superconductors. Later, high-temperature superconductivity above 100 K was reported for single-layer FeSe films grown on a SrTiO₃ substrate [13–15]. There are strong indications that the interface in the single-layer FeSe/SrTiO₃ films plays an important role for the strongly increased transition temperature [15–17].

Recently, the new Fe-based superconductor $(\text{Li}_{1-x}\text{Fe}_x)$ OHFe_{1-y}Se (FeSe1111) with T_c up to about 43 K has been synthesized [18–22]. This material consists of FeSe layers sandwiched in between (Li, Fe)OH layers along the *c* direction. The distance between two adjacent FeSe layers is 9.32 Å, which is much larger than in bulk FeSe (5.5 Å) [21]. This

Figure 1. Temperature dependence of the in-plane electrical resistivity of FeSe11111 in zero field up to 250 K. Inset (a) shows a magnified view near T_c , inset (b) the magnetic susceptibilities for zero-field cooling (ZFC) and field cooling (FC, 1 Oe along the *c* axis).

signals a weak interaction between the two adjacent FeSe layers in FeSe11111 and an enhanced two-dimensional nature of the electronic structure compared to bulk FeSe. The phase diagram of FeSe11111 suggests that FeSe- and FeAs-based superconductors may share a common mechanism for super-conductivity [21]. It further has been reported that FeSe11111 has only electron-like Fermi-surface pockets and might have an electronic origin of superconductivity in common with the single-layer FeSe/SrTiO₃ films [24].

As FeSe11111 is a single-phase bulk superconductor with a relatively high T_c and free from complications of phase separation and interface effects, studies of this material can be very important for unveiling the mechanism of high-temperature superconductivity in the Fe-based materials. As a basic parameter, the temperature dependence of the upper critical field, H_{c2} , reflects the underlying electronic structure responsible for superconductivity and provides valuable information on the microscopic origin of pair breaking. Thus, by measuring the temperature dependence of H_{c2} of FeSe11111 information on the superconducting pairing mechanism can be gained.

In this work, we present the temperature dependence of H_{c2} for magnetic fields applied along the *c* axis and in the *ab* plane for an FeSe11111 single crystal. H_{c2} was determined from magnetotransport measurements over a wide range of temperatures down to 1.4 K in static magnetic fields up to 14 T and pulsed magnetic fields up to 70 T.

2. Experiment

Single crystals of FeSe11111 were grown by a hydrothermal ion-exchange technique using a large insulating $K_{0.8}Fe_{1.6}Se_2$ crystal as a matrix. We studied four crystals from the same batch. As the results are very similar, here we only show the data from one crystal. The superconducting transition in the investigated crystal is clearly resolved at $T_c \approx 40$ K in the resistivity and magnetic susceptibility (figure 1). The sample shows a very narrow superconducting transition width of less than 1 K as seen in the magnetic-susceptibility data (inset (b) of figure 1), reflecting a high crystal quality. A more detailed characterization of the material can be found in previous publications [21–23].

The resistivity in the *ab* plane (ρ_{ab}) was measured by a standard four-probe method with magnetic fields applied parallel to the ab plane and the c axis, respectively. The field-dependent resistivity ρ_{ab} was measured at different temperatures using a 70 T non-destructive pulsed magnet with a pulse duration of about 150ms driven by a capacitor bank at the Dresden High Magnetic Field Laboratory (HLD) [25]. To minimize the self-heating effect in pulsed magnetic fields, the sample was cut to a size of about $2 \text{ mm} \times 0.5 \text{ mm} \times 0.1$ mm. The applied current was 1 mA at a frequency of 10kHz. The voltage was recorded by a digital oscilloscope, Yokogawa DL750, with a high sampling rate of 1 MS s⁻¹ and a resolution of 16 bit. After the pulse, the signal processing was performed by use of a lock-in software procedure. No obvious heating effects were observed as the resistance curves collected in up and down sweeps of the magnet are identical within error bars. The down-sweep branch of the pulse was used to determine ρ_{ab} and from that H_{c2} utilizing its long decay time (about 120 ms). In order to extract the temperature dependence of H_{c2} near T_{c} more accurately, the temperature dependence of ρ_{ab} was measured by use of a commercial Physical Property Measurement System (PPMS) with magnetic fields up to 14 T.

3. Results and discussion

Figure 2 shows the temperature dependence of ρ_{ab} of the FeSe11111 single crystal in magnetic fields from 0 to 14 T for H||c and H||ab, respectively. The magnetic field shifts the zero-resistance state to lower temperature much faster for H||c than for H||ab, implying a high anisotropy of H_{c2} close to T_c . The magnetic-field dependence of ρ_{ab} measured at different temperatures in pulsed magnetic fields up to 70

Figure 2. Temperature dependence of the in-plane electrical resistivity ρ_{ab} of FeSe11111 at fields $\mu_0 H = 0, 0.5, 1, 2, 4, 6, 8, 10, 12$ and 14 T with (a) $H \| c$ and (b) $H \| ab$.

T for H||c and H||ab is shown in figures 3(a) and (b), respectively. Apparently, a stronger in-plane field (H||ab) is needed to suppress superconductivity, consistent with the expected large electronic anisotropy in the layered FeSe11111 material. Similar anisotropies have been found for other Fe-based superconductors [26–34]. One can see that more than 60 T is needed to induce $\rho_{ab} > 0$ at 1.4 K for H||c. For H||ab and T = 24 K, the maximum field of 70 T is just sufficient to leave the zero-resistance state. For lower temperatures $\rho_{ab} = 0$ up to highest fields.

For both field directions, clear field-induced broadenings of the resistive transitions are observed. This contrasts the behavior seen for Ba122 [28, 29, 35, 36], FeTe_{0.6}Se_{0.4} [30] and LiFeAs [31], but is similar to the broadening found for NdFeAsO_{0.7}F_{0.3} [33], SmFeAsO_{0.85} and SmFeAsO_{0.8}F_{0.2} [34], suggesting a wide vortex-liquid region in FeSe11111. It is known that for a broadened superconducting transition different criteria for the determination of the critical parameters can lead to different temperature dependences of H_{c2} [34]. We assume a similar scenario as was reported for SmFeAsO_{0.8}F and SmFeAsO_{0.8}F_{0.2} [34]. For these superconductors the region around 10% of the normal-state resistance R_n is related to the vortex-liquid phase, while the region close to 90% of R_n is affected by superconducting fluctuations. Thus, we also choose the temperature or field where R_n is reduced to 50% as the criterion to determine the $H_{c2} - T$ phase diagram.

The resulting critical fields $H_{c2}^{l/c}$ and $H_{c2}^{l/ab}$ are summarized in figure 4. The closed symbols are obtained from pulsed-field measurements utilizing magnetic-field scans (H scan), and the open symbols are obtained from PPMS measurements by use of temperature scans (T scan). The consistency of the data from those two different measurements proves the reliability of the results. $H_{c2}^{l/c}$ shows a quasilinear increase without a clear saturation at low temperatures, while $H_{c2}^{l/ab}$ has a tendency to saturate with decreasing temperature.

The data of $H_{c2}^{\prime\prime\prime c}$ have a modest slope $-dH_{c2}^c/dT_c|_{T_c} = 2.29$ T K⁻¹ close to T_c , but the data of $H_{c2}^{\prime\prime\prime ab}$ are much steeper with a slope $-dH_{c2}^{ab}/dT_c|_{T_c} = 16.0$ T K⁻¹ at T_c . From that, we can estimate the zero-temperature limits of the orbital critical fields by using the Werthamer–Helfand–Hohenberg (WHH) formula [37], $H_{c2orb}(0) = -0.69(dH_{c2}/dT)|_{T_c}T_c$. With $T_c = 40$ K, we estimate critical fields of $H_{c2orb}^c(0) = 63$ T and $H_{c2orb}^{ab}(0) = 440$ T. On the other hand, the Paulilimiting field for a weakly coupled *s*-wave superconductor in the absence of spin–orbit scattering can be estimated by [38] $H_P(0)/T_c = 1.86$ T K⁻¹, resulting in $H_P(0) = 74.4$ T. Consequently, we expect for in-plane fields pronounced

Figure 3. Magnetic-field dependence of the in-plane electrical resistivity ρ_{ab} of FeSe11111 at different temperatures with (a) H || ab and (b) H || c up to 70 T.

Figure 4. Temperature dependence of H_{c2} of FeSe11111 extracted from the magnetotransport measurements. The closed symbols are obtained from pulse-field measurements by scanning field (H scan), and the open symbols are obtained from PPMS measurements by scanning temperature (T scan). The red line shows a WHH fit with parameters $\alpha = 6.5$ and $\lambda_{so} = 0.32$ for $H_{c2}^{l/ab}$. The blue line is a two-band fit for $H_{c2}^{l/c}$ with parameters $D_1 = 4.9$ and $\eta = 0.36$. The dashed lines are the WHH predictions with $\alpha = 0$ and $\lambda_{so} = 0$ both for $H_{c2}^{l/ab}$ and $H_{c2}^{l/c}$. See equations (1) and (2) in the text. Inset: temperature dependence of the anisotropy parameter $\gamma = H_{c2}^{l/ab}/H_{c2}^{l/c}$.

Pauli-limiting effects leading to a curvature change of the $H_{c2}^{l/ab}$ data with saturation towards zero temperature. Indeed, this fits nicely with our observation.

To quantitatively describe our results, a more complete theoretical treatment, taking into account both orbital pairbreaking and spin-paramagnetic effects, is needed. Therefore, we use the full WHH formula that incorporates the spinparamagnetic effect via the Maki parameter α and spin-orbit effects via λ_{so} to describe the experimental H_{c2} data [37],

$$\ln \frac{1}{t} = \sum_{\nu = -\infty}^{\infty} \frac{1}{|2\nu + 1|} - \left[|2\nu + 1| + \frac{\bar{h}}{t} + \frac{(\alpha \bar{h}/t)^2}{|2\nu + 1| + (\bar{h} + \lambda_{so})/t} \right]^{-1}$$
(1)

where $t = T/T_c$ and $\bar{h} = (4/\pi^2)[H_{c2}/|dH_{c2}/dT|_{T_c}]$. As shown by the red line in figure 4, the best fit ($\alpha = 6.5$ and $\lambda_{so} = 0.32$) can reproduce the experimental $H_{c2}^{l/ab}$ data very well resulting in $H_{c2}^{l/ab}(0) = 98$ T. However, for the other field direction the WHH fit (dashed black line) underestimates the lowtemperature data of $H_{c2}^{l/c}$ which is more important than the high-temperature data for Fe-based superconductors, even when considering the orbital pair breaking only ($\alpha = \lambda_{so} = 0$).

On the other hand, the quasilinear temperature dependence of $H_{c2}^{l/c}$, which has been commonly observed in MgB₂ and some iron-based superconductors [26, 33, 34, 36], can be understood by an effective two-band model [39],

$$a_0[\ln t + U(h)][\ln t + U(\eta h)] + a_1[\ln t + U(h)] + a_2[\ln t + U(\eta h)] = 0.$$
(2)

The coefficients a_0 , a_1 , and a_2 are determined from the BCS coupling tensor $\lambda_{mm'}$ [39]. The function $U(x) = \psi(1/2 + x) - \psi(1/2)$, where ψ is the di-gamma function. Other parameters are defined by $h = H_{c2}D_1/2\phi_0T$ and $\eta = D_2/D_1$, where ϕ_0 is the flux quantum and D_n is the electron diffusivity for the nth Fermi-surface sheet. Since the line shape mostly depends on the choice of D_1 and η rather than the coupling constants $\lambda_{mm'}$, we use $a_0 = 1$, $a_1 = 1.5$, and $a_2 = 0.5$, i.e. the same values as for the BaFe_{2-x}Ni_xAs₂ superconductors [36], and only tune D_1 and η to describe our $H_{c2}^{\prime\prime\prime c}$ data, where $\eta \neq 1$ means different intraband scattering on each Fermi sheet. The best fit with $D_1 = 4.9$ and $\eta = 0.36$ agrees very well with the $H_{c2}^{l/c}$ data and gives $H_{c2}^{l/c}(0) = 67$ T (blue line in figure 4). It is also possible to fit the $H_{c2}^{l/ab}$ data with the two-band model, but that would introduce a much higher uncertainty in the obtained parameters because of the additional parameters to be used.

The anisotropy parameter $\gamma = H_{c2}^{l/ab}/H_{c2}^{l/c}$ is about 7 near T_c and decreases considerably towards lower temperatures (inset of figure 4). We calculated γ for the whole temperature range by using equations (1) and (2) with above fit results (line in the inset of figure 4). γ monotonically decreases with decreasing temperature and reaches about 1.5 for zero temperature. This weakened anisotropy at low temperatures, also observed in many other Fe-based superconductors [26–31, 33, 34, 40], is a consequence of the Pauli-limiting effect that quickly becomes dominant for $H_{c2}^{l/ab}$ somewhat below T_c .

4. Summary

In summary, we have constructed the $H_{c2} - T$ phase diagram for FeSe11111 with $T_c \approx 40$ K by use of electrical-transport measurements in magnetic fields up to 70 T aligned both within the *ab* plane and along the *c* axis. The quasilinear $H_{c2}^{l/c}$ data can be described by an effective two-band model, whereas the $H_{c2}^{l/ab}$ data follow the WHH model including orbital pair-breaking and spin-paramagnetic effects. The upper critical fields of FeSe11111 are determined as $H_{c2}^{l/c}(0) = 67$ T and $H_{c2}^{l/ab}(0) = 98$ T. The anisotropy of H_{c2} monotonically decreases from about 7 near T_c to 1.5 at 0K due to the strong paramagnetic pair-breaking effects for in-plane magnetic fields.

Acknowledgments

We acknowledge the support of the HLD at HZDR, member of the European Magnetic Field Laboratory (EMFL). JY acknowledges the support of Outstanding technologist program of the Chinese Academy of Sciences. The work at IOP, CAS, is supported by NSFC (11574370 and 11274358).

References

- Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
- [2] Ren Z A et al 2008 Chin. Phys. Lett. 25 2215
- [3] Hsu F C et al 2008 Proc. Natl Acad. Sci. 105 14262-4
- [4] McQueen T M et al 2009 Phys. Rev. B 79 014522
- [5] Dagotto E 2013 Rev. Mod. Phys. 85 849
- [6] Guo J, Jin S, Wang G, Wang S, Zhu K, Zhou T, He M and Chen X 2010 Phys. Rev. B 82 180520
- [7] Ying J J et al 2011 Phys. Rev. B 83 212502
- [8] Li C H, Shen B, Han F, Zhu X and Wen H H 2011 *Phys. Rev.* B 83 184521
- [9] Fang M, Wang H, Dong C, Li Z, Feng C, Chen J and Yuan H Q 2011 Europhys. Lett. 94 27009
- [10] Wang Z, Song Y J, Shi H L, Wang Z W, Chen Z, Tian H F, Chen G F, Guo J G, Yang H X and Li J Q 2011 *Phys. Rev.* B 83 140505
- [11] Li W et al 2012 Nat. Phys. 8 126-30
- [12] Bao W 2015 J. Phys.: Condens. Matter 27 023201
- [13] Wang Q-Y et al 2012 Chin. Phys. Lett. 29 037402
- [14] He S et al 2013 Nat. Mater. 12 605–10
- [15] Ge J-F, Liu Z-L, Liu C, Gao C-L, Qian D, Xue Q-K, Liu Y and Jia J-F 2015 Nat. Mater. 14 285–9
- [16] Peng R et al 2014 Phys. Rev. Lett. 112 107001
- [17] Lee J J et al 2014 Nature **515** 245–8
- [18] Lu X F et al 2014 Nat. Mater. 14 325
- [19] Pachmayr U, Nitsche F, Luetkens H, Kamusella S, Brueckner F, Sarkar R, Klauss H-H and Johrendt D 2015 Angew. Chem. Int. Ed. 54 293
- [20] Sun H et al 2015 Inorg. Chem. 54 1958
- [21] Dong X et al 2015 J. Am. Chem. Soc. 137 66
- [22] Dong X et al 2015 Phys. Rev. B 92 064515

- [23] Wang C, Yi X, Qiu Y, Tang Q, Zhang X, Luo Y and Yu B 2016 Supercond. Sci. Technol. 29 055003
- [24] Zhao L et al 2016 Nat. Commun. 7 10608
- [25] Zherlitsyn S, Herrmannsdoerfer T, Skourski Yu, Sytcheva A and Wosnitza J 2007 J. Low Temp. Phys. 146 719
- [26] Hunte F, Jaroszynski J, Gurevich A, Larbalestier D, Jin R, Sefat A S, McGuire M A, Sales B C, Christen D K and Mandrus D 2008 Nature 453 903
- [27] Altarawneh M M, Collar K, Mielke C H, Ni N, Budko S L and Canfield P C 2008 Phys. Rev. B 78 220505
- [28] Yuan H, Singleton J, Balakirev F F, Baily S A, Chen G, Luo J and Wang N 2009 Nature 457 565
- [29] Kano M, Kohama Y, Graf D, Balakirev F, Sefat A S, Mcguire M A, Sales B C, Mandrus D and Tozer S W 2009 *J. Phys. Soc. Japan* 78 084719
- [30] Khim S, Kim J W, Choi E S, Bang Y, Nohara M, Takagi H and Kim K H 2010 Phys. Rev. B 81 184511

- [31] Khim S, Lee B, Kim J W, Choi E S, Stewart G R and Kim K H 2011 Phys. Rev. B 84 104502
- [32] Zhang J L, Jiao L, Balakirev F F, Wang X C, Jin C Q and Yuan H Q 2011 Phys. Rev. B 83 174506
- [33] Jaroszynski J et al 2008 Phys. Rev. B 78 174523
- [34] Lee H-S, Bartkowiak M, Park J-H, Lee J-Y, Kim J-Y, Sung N-H, Cho B K, Jung C-U, Kim J S and Lee H-J 2009 *Phys. Rev.* B 80 144512
- [35] Wang Z S, Luo H Q, Ren C and Wen H H 2008 Phys. Rev. B 78 140501
- [36] Wang Z et al 2015 Phys. Rev. B 92 174509
- [37] Werthamer N, Helfand E and Hohenberg P 1966 Phys. Rev. 147 295
- [38] Clogston A M 1962 Phys. Rev. Lett. 9 266
- [39] Gurevich A 2003 Phys. Rev. B 67 184515
- [40] Mun E D, Altarawneh M M, Mielke C H, Zapf V S, Hu R, Bud'ko S L and Canfield P C 2011 Phys. Rev. B 83 100514